Sửa đề: hình chữ nhật ABCD
a: Xét ΔHBA vuông tại H và ΔDCA vuông tại D có
góc ABH=góc ACD
=>ΔHBA đồng dạng với ΔDCA
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD
Sửa đề: hình chữ nhật ABCD
a: Xét ΔHBA vuông tại H và ΔDCA vuông tại D có
góc ABH=góc ACD
=>ΔHBA đồng dạng với ΔDCA
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD
Cho hình chữ nhật ABCD có AB=4cm,BC=3cm.Vẽ đường cao AH của tam giác ADB
a) chứng minh tam giác AHB~tam giác BCD
b) chứng minh AD2=DH.DB
c) tình độ dài đoạn thẳng DH,AH
d) tính tỉ số diện tích tam giác AHB và tam giác BCD
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. vẽ đường cao AH của tam giác ABC.
a) Chứng minh tg ABC đồng dạng tg HBA
b) Chứng minh AB^2=BC.BH
c) Vẽ đường phân giác BD của tg ABC cắt AH ở E. Tính EA/EA
Bài 1 : Cho tam giác ABC vuông tại A , AB = 6cm , AC = 8cm . Vẽ đường cao AH
a, Chứng minh tam giác AHB đồng dạng với tam giác CAB
b, Chứng minh : AH2 = HB.HC và tính độ dài AH và HB
c, Phân giác của góc ACB cắt AH tại E và cắt AB tại D . Tính tỉ số diện tích của tam giác ACD và tam giác HCE
d, Lấy điểm K bất kì trên AC ( K khác A và C ) . Kẻ đường vuông góc với HK cắt AB tại G . Chứng minh : góc BAH = góc GKH
Mng giúp chii bài này vớii ạ . Chii camon :33333
Cho tam giác ABC vuông tại A biết AM = 6 cm , AC=8cm đường cao AH. Gọi DE lần lượt là chân đường vuông góc kẻ từ H đến AB và AC .
a, Tính diện tích tam giác ABC
b, Chứng minh : AM=DE
c,Kẻ trung tuyến AM của tam giác ABC. Chứng minh : AM vuông góc DE
Cho ΔABC vuông tại B (AB<AC), đường cao BH.
a) Cm: ΔABC∼ΔAHB và AB2 = AH.AC
b)Vẽ AD là tia phân giác trong \(\widehat{BAC}\) (D thuộc BC) cắt BH tại M
Cm: \(\dfrac{AM}{AD}=\dfrac{DB}{DC}\)
c) Kẻ CI vuông góc với AD tại I. Chứng minh: AD2 = AB.AC-BD.CD
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
Cho tam giác ABC vuông tại A có AH là đường cao Vẽ HD vuông AB ( D Thuộc AB) HE vuông EC ( E thuộc AC). AB= 12 cm, AC= 16cm
a) Chứng minh Tam giác HAC Đồng dạng Tam giác ABC
b) Chứng minh \(AH^2\) = AD.AB
c) Chứng minh tam giác ACB đồng dạng tam giác ADE
Giúp với đag cần gấp
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DAEB ∽ DAFC.
b) Chứng minh tam giác AEF ∽ tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Làm giúp mình câu c,d với!!!