Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, AD là tia phân giác của góc BAC (D ϵ BC)
a, Tính tỉ số DBDCDBDC và độ dài các đoạn thẳng BC, DB, DC
b, TỪ D kẻ DE vuông góc với AB tại E (E ϵ AB). Tính độ dài AE, DE và diện tích tứ giác AEDC
c, Gọi O là giao điểm của AD và CE. QUa O kẻ đường thằng song song với AC cắt BC và AB lần lượt tại M và N. Chứng minh rằng OM = ON
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=62+82=100⇔BC2=62+82=100
hay BC=10(cm)
Vậy: BC=10cm