Áp dụng PTG cho tg vuông ABC
AB2+AC2=BC2
=> BC2= 9+16=25
=> BC = 5 (cm)
Áp dụng PTG cho tg vuông ABC
AB2+AC2=BC2
=> BC2= 9+16=25
=> BC = 5 (cm)
cho tam giác ABC vuông tại A có AB= 6cm và BC= 10cm.kẻ đường phan giác CD của tam giác ABC (D ϵ AB)
a) tính độ dài cạnh AC. Tính độ dài đoạn thẳng BD và AD.
b) kẻ đường cao AH (H ϵ BC). Chứng minh AB2=HB.BC. Từ đó suy ra độ dài AH.
c) AH cắt CD tại E. Chứng minh AD.EH=ED.BD
Bài 1 : Cho tam giác ABC vuông tại A , AB = 6cm , AC = 8cm . Vẽ đường cao AH
a, Chứng minh tam giác AHB đồng dạng với tam giác CAB
b, Chứng minh : AH2 = HB.HC và tính độ dài AH và HB
c, Phân giác của góc ACB cắt AH tại E và cắt AB tại D . Tính tỉ số diện tích của tam giác ACD và tam giác HCE
d, Lấy điểm K bất kì trên AC ( K khác A và C ) . Kẻ đường vuông góc với HK cắt AB tại G . Chứng minh : góc BAH = góc GKH
Mng giúp chii bài này vớii ạ . Chii camon :33333
Xin sự trợ giúp câu e ah,
Bài 2. Cho tam giác ABC vuông tại A ( AB < AC ), BD là phân giác của góc ABC ( D thuộc AC ). Kẻ CE vuông góc với BD tại E.
a. Chứng minh ∆ABD ~ ∆ECD;
b. Chứng minh = ;
c, Khi AB = 3cm; AC = 4cm, hãy tính độ dài đoạn AD và SCDE ?
d. kẻ đường thẳng vuông góc với BD tại B, đường thẳng này cắt đường thẳng AC tại K. Chứng minh: AD. CK = AK.CD;
e. Gọi T là giao điểm của AE và BK, H là hình chiếu vuông góc của A trên BD. Chứng minh ba điểm C; H; T thẳng hàng.
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Bài 2 : CHo tam giác ABC vuông tại A có AB=12cm , AC=16 cm . Tia phân giác góc A cắt BD tại D
a, Tính tỉ số diện tích 2 tam giác ABD và ACD
b, Tính độ dài cạnh BC của tam giác
c, Tính độ dài các đoạn thẳng BD và CD
d, Tính chiều cao AH của tam giác
1:Cho tam giác ABC vuông tại A,có:AB=6 cm,AC =8 cm,đường cao AH .Đường phân giác BD cắt AH tại 1 (D ϵAC).
a,Tính độ dài các đoạn thẳng BC,AD và DC.
b,Chứng minh:ΔABD ∼ ΔHBI
2:Cho hình lăng trụ đứng ABCD A'B'C'D'' có ABCD là hình chữ nhật.Tính thể tích của hình lăng trụ,biết AA' =8 cm,AB=3 cm,AC=5 cm
Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc kẻ từ A đến BD.
a, Chứng minh tam giác AHB ~ tam giác BCD
b, Tính độ dài đoạn thẳng AH, biết AB = 12 cm và BC = 9 cm
c, Chứng minh AH2 = BH.DH
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D
a)Tính độ dài các đoạn thẳng AC,AD và DC
b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC
c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng