Cho tam giác ABC vuông tại A có AB = 15cm, AC = 20cm. Kẻ đường cao AH.
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC, từ đó tính độ dài đường cao AH
b, Tia phân giác của góc HAC cắt BC tại D. Chứng minh tam giác ABD cân
c, Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh CE.CA = CD.CH
d, Chứng minh DC/DH = AC/AE
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)
hay AH=12(cm)
Vậy: AH=12cm
b) Ta có: tia AD nằm giữa hai tia AB,AC(gt)
nên \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
hay \(\widehat{BAD}+\widehat{CAD}=90^0\)(1)
Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: AD là tia phân giác của \(\widehat{HAC}\)(gt)
nên \(\widehat{CAD}=\widehat{HAD}\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BAD}=\widehat{BDA}\)
Xét ΔBDA có \(\widehat{BAD}=\widehat{BDA}\)(cmt)
nên ΔBDA cân tại B(Định lí đảo của tam giác cân)