a, Xét \(\Delta CHA.và.\Delta CAB\), ta có:
\(\widehat{CHA}=\widehat{CAB}=90^o\)
\(\widehat{C.}chung\)
\(\Rightarrow\Delta CHA\sim\Delta CAB\) ( g.g )
b, \(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{CA}{CB}\\ \Rightarrow AC^2=CB.CH\left(đpcm\right)\)
c. Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow BC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
\(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{CA}{CB}\)
\(\Rightarrow AH=\dfrac{CA.AB}{CB}=\dfrac{12.9}{15}=7,2\left(cm\right)\)