a) Xét ΔABC và ΔHAC có
\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{ACB}\) chung
Do đó: ΔABC∼ΔHAC(g-g)
b)
Sửa đề: Chứng minh \(AC^2=HC\cdot BC\)
Ta có: ΔABC∼ΔHAC(cmt)
⇒\(\frac{AC}{HC}=\frac{BC}{AC}\)
hay \(AC^2=HC\cdot BC\)(đpcm)
a) Xét ΔABC và ΔHAC có
\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{ACB}\) chung
Do đó: ΔABC∼ΔHAC(g-g)
b)
Sửa đề: Chứng minh \(AC^2=HC\cdot BC\)
Ta có: ΔABC∼ΔHAC(cmt)
⇒\(\frac{AC}{HC}=\frac{BC}{AC}\)
hay \(AC^2=HC\cdot BC\)(đpcm)
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH, tia phân giác của góc ABC cắt AC tại F và AH tại E. a) Tính BC, AF, FC b) Chứng minh tam giác ABC đồng dạng tam giác HBA c) Chứng minh AE.AF=EH.FC Mong các bạn ra đáp án giúp mình câu này với Thank you các bạn❤❤❤
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng: a) Tam giác BHE đồng dạng tam giác BAH b) Tứ giác AEHF là hình chữ nhật c) AH bình = AF . AC d) CH bình = CF . CA e) Tam giác AEF đồng dạng tam giác ACB
Cho tam giác ABC vuông tại A. Kẻ đường cao AH a/ chứng minh: tam giác ABC đồng dạng với tam giác ABH b/ chưng minh: tam giác ABH đồng dạng với tam giác ACH c/ tính BC, AH, AD, HC. Biết AB = 6cm, AC = 8cm
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db