Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
cho tam giác ABC cân tại A gọi M là trung điểm của BC. Trên Tia đối MA lấy điểm N sao cho MA=MN chứng minh AB//NC chứng minh tam giác ABN cân
cho tam giác ABC có AB = AC , gọi I là trung điểm của BC a. chứng minh tam giác ABI= tam giác ACI
b.kẻ đường thẳng qua I và vuông góc với AB tại D.Trên tia đối của tia ID lấy điểm E sao cho ID = IE .Chứng minh AB song song CE
c.kẻ EK vuông góc với BC tại K ,cắt mạnh AC tại H .Chứng minh HD vuông góc với AI
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối tia IB lấy điểm D sao cho ID=IB.
a) Chứng minh: tam giác IAB= tam giác ICD
b) Gọi M là trung điểm BC. AM cắt BI tại G
Chứng minh: BG= 2/3 ID
c) Gọi N là trung điểm CD. AN cắt DI tại K. Chứng minh: BG=GK=KD
1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB
Cho tam giác abc có góc A bằng 90 độ, AB = 6cm AC=8cm kẻ tia phân giác BD (D thuộc AC) kẻ DE vuông góc với BC
a. Tính BC, BE
b. Chứng minh BD là trung trực của AE
c. ED cắt BA tại M. chứng minh tam giác MBC cân
d. Gọi I là trung điểm MC. Chứng minh BDI thẳng hàng( cần gấp)
e. Chứng minh BD > AD