a: Xét tứ giác ABDM có
H là trung điểm chung của AD và BM
nên ABDM là hình bình hành
Suy ra: AB=DM và AB//DM
b: Xét ΔADC có
CH là đường cao
DM là đường cao
CH cắt DM tại M
Do đó: M là trực tâm
=>AM vuông góc với CD
a: Xét tứ giác ABDM có
H là trung điểm chung của AD và BM
nên ABDM là hình bình hành
Suy ra: AB=DM và AB//DM
b: Xét ΔADC có
CH là đường cao
DM là đường cao
CH cắt DM tại M
Do đó: M là trực tâm
=>AM vuông góc với CD
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
Cho \(\Delta ABC\) vuông tại A , đường cao AH , trung tuyến AM . Trên tia đối của tia MA lấy D sao DM = MA . Trên tia đối của tia CD lấy điểm I sao cho CI = CA . Qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E . Chứng minh rằng ;
a) AB vuông góc với EI b) AE = BC
c) \(AM=\dfrac{1}{2}BC\)
(Mọi người giúp e câu b với ạ , nêu hướng làm cũng đc )
Cho tam giác ABC, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH=AC, trên tia đối của tia CE, lấy điểm K sao cho CK=AB. Chứng minh rằng AH = AK.
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf
Cho tam giác ABC(góc A =90độ), đường cao AH, trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho DM=MA. Trên tia đối của tia CD lấy điểm I sao cho CI=CA. Qua I vẽ đường thẳng song song với AC cắt AH tại E. Chứng minh rằng : AE= BC.