Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC có góc A = 90 0 , AB = 8cm, AC = 6cm .
a) Tính BC
b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ∆BEC = ∆DEC .
c) Chứng minh DE đi qua trung điểm cạnh BC
Bài 13: Cho ∆ABC cân (AB = AC). Từ trung điểm M của BC vẽ ME⊥AC; MF⊥AC. CMR
a) BEM =CFM
b) AE = AF
c) AM là phân giác của góc EMF
d) So sánh MC và ME
GIẢI GIÚP EM PHẦN C VÀ D BÀI 13 THÔI Ạ
1 Cho tam giác ABC vuông ở A.trung tuyến AM.chứng minh AM=1/2 BC
2.CHo tam giác ABC.Trên tia đối tia AB lấy D sao cho AD=AB.Trên AC lấy E sao cho AE=1/3 AC .tia BE cắt CD ở M
Chứng minh: a,M là trung điểm CD
b,AM=1/2 BC
Cho tam giác ABC có AB<AC, phân giác AM. Trên cạnh AC lấy N sao cho AN=AB. Gọi K giao điểm của AB và MN CMR
a)MB=MN
b) tam giác MBK= tam giác MNC
c) AM vuông với KC và BN song song KC
d) AC -AB>MC-MB
Cho ΔABC (AB=AC). Trên cạnh AB lấy E, trên cạnh AC lấy F sao cho AE=AF a) chứng minh BÉ= CF và CE=BF b) chứng minh BC//BF c) gọi Ở là giao của BF và CE. Chứng minh AO vuông góc với BC