a: vecto AI=1/2vecto AG=1/2*2/3*vecto AM(Với M là trung điểm của BC)
=1/3*1/2(vecto AB+vecto AC)
=1/6vecto AB+1/6vecto AC
vecto AK=1/5vecto AB
vecto CI=vecto CA+vecto AI
=-vecto AC+1/6vecto AB+1/6vecto AC
=1/6vecto AB-5/6vecto AC
a: vecto AI=1/2vecto AG=1/2*2/3*vecto AM(Với M là trung điểm của BC)
=1/3*1/2(vecto AB+vecto AC)
=1/6vecto AB+1/6vecto AC
vecto AK=1/5vecto AB
vecto CI=vecto CA+vecto AI
=-vecto AC+1/6vecto AB+1/6vecto AC
=1/6vecto AB-5/6vecto AC
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng
1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
Cho hình bình hành ABCD, J là trung điểm BC, K thỏa 2 vectơ KB = - vectơ AK
a) Phân tích vec tơ DJ, vectơ DK theo hai vec tơ AB,BD
b) chứng jinh: D,K,J thẳng hàng
c) G là trọng tâm tam giác ABC.Phân tích vectơ AG theo vectơ AB,AD
Cho △ABC, điểm I∈ BC kéo dài:IB=3IC,
điểm J∈ AC:JA=2JC,
điểm K ∈ AB:KA=3KB.
a, Biểu diễn vecto AI theo vecto AB,AC
b, Biểu diễn vecto JK theo vectơ AB,AC
c, Biểu diễn vecto BC theo vecto AI,JK.
cho tam giác ABC ;G là trọng tâm; I là điểm trên cạnh BC sao cho 2CI= 3 BI và J là điểm trên cạnh BC kéo dài sao cho 5JB= 2 DJC
A. tính vectơ AI và vectơ AJ theo vectơ AB và vectơ AC
B. tính vectơ AG theo vectơ AI và vectơ AJ
cho tam giác ABC có G là trọng tâm , I là trung điểm của AB . a) phân tích vecto CI và AG theo vecto BA và BC. b) gọi E,F là 2 điểm thỏa : 4 vecto BE- vecto BC = vecto không, vecto FA = m vecto AC . Tìm m để E,F,I thẳng hàng
1. Cho hbh ABCD. Đặt vecto AB=a, AD=b. Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vecto BI, CG theo vecto a,b
2. Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng của A qua B và E là điểm trên đoạn AC sao cho AE =2/5 AC
a) phân tích vecto DE, DG theo vecto AB và AC
b) cmr D,G,E thẳng hàng
c) xét K là điểm thỏa vecto KA + KB + 3KC = 2KD. CMR KG//CD
Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...