Mệnh đề sau đây đúng hay sai? Chứng minh rằng mệnh đề này đúng hoặc mệnh đề này sai:
\(sin^2A+sin^2B+sin^2C\le\dfrac{9}{4}\)
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
1. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường trung tuyến. Kéo dài 3 trung tuyến cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\le\dfrac{9}{4}\)
2. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường cao. Kéo dài 3 đường cao cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\ge\dfrac{9}{4}\)
3. Cho tam giác ABC với O1, O2, O3 là tâm các đường trong bàng tiếp góc A, B, C. Gọi S1, S2, S3 lần lượt là diện tích các tam giác O1BC, O2CA, O3AB.
Chứng minh: \(S_1+S_2+S_3\ge3S\)
Chứng minh hằng đẳng thức sau:
\(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
1) Xet x ∈ [\(\dfrac{\Pi}{2}\) ; π ]. Neu x1 < x2 thi Sin x1.......Sin x2
Chứng minh rằng với mọi tam giác ABC, ta có :
1) \(\dfrac{r}{R}\le\dfrac{1}{2}\)
2) \(\dfrac{1}{2Rr}\le\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{4r^2}\)
3) \(m_a.m_b.m_c\ge\sqrt{p.S}\)
4) \(a^2\left(p-a\right)+b^2\left(p-b\right)+c^2\left(p-c\right)\ge\dfrac{3r}{2R}abc\)
Rút gọn biểu thức: \(A=4\sin x\sin\left(x+\frac{\pi}{2}\right)\sin\left(3x+\pi\right)-\cos\left(5\pi-x\right)\)
1. cho \(\Delta ABC\) có mb=4, mc=2, a=3, tính độ dài các cạnh AB, AC
2. cho \(\Delta ABC\) AB=3, AC=4 và diện tích S=\(3\sqrt{3}\) tính cạnh BC
3. tính bán kính đường tròn nội tiếp \(\Delta ABC\) biết AB=2. AC=3, BC=4
4. tính góc A của \(\Delta ABC\) có các cạnh a,b,c thỏa mãn hệ thức b(b2-a2)=c(a2-c2)
5. cho \(\Delta ABC\) chứng minh rằng
a. \(\frac{\tan A}{\tan B}=\frac{c^2+a^2-b^2}{c^2+b^2-a^2}\)
b. \(c^2=\left(a-b\right)^2\) \(+4S.\frac{1-\cos C}{\sin C}\)
c. S=2R2.\(\sin A.\sin B.\sin C\)