Cho tam giác ABC, trung tuyến AM biết AB=4cm, AC=8cm. Qua B kẻ đường thẳng cắt AC tại F sao cho góc ABF = góc ACB
a) Chứng tỏ:
Tam giác ABF đồng dạng với tam giác ABC. Tính CF
b) Chứng tỏ: SABC = 2 SADC
c) Gọi O là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường thẳng song song với BF cắt CO tại K và cắt AD tại I. Chứng tỏ:
1. \(\dfrac{FC}{FA}\) = \(\dfrac{CI}{KA}\)
2. .\(\dfrac{DB}{DC}.\dfrac{FC}{FA}.\dfrac{EA}{EB}=1\)
a)
Xét tam giác ABF và tam giác ACB có:
BAC chung
ABF = ACB (gt)
=> Tam giác ABF ~ Tam giác ACB (g - g)
=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)
=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)
=> AF = 2 (cm)
Ta có:
AF + FC = AC
2 + FC = 8
FC = 6 (cm)
b)
D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)
=> \(DC=\dfrac{1}{2}BC\)
Kẻ đường cao AH (H \(\in\) BC)
Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)
=> SABC = 2SADC
c)
Tam giác CKA có OF // KA (gt) nên theo định lý Talet
=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)
Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet
=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)
(1) và (2)
=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)
d)
Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet
=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)
Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet
=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)
Ta có:
\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)