Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho ΔABC vuông tại A có đường cao AH, M là trung điểm của BC. Trên tia đối của tia AB lấy điểm D sao cho AD=AC. Trên tia đối của tia AC lấy điểm E sao cho AE=AB. Chứng minh rằng:
a) AM ⊥ DE
b) AH đi qua trung điểm của DE
Cho tam giác ABC vuông ở A . Trên tia đối của tia BA lấy điểm D. Qua điểm B kẻ đường thẳng d vuông góc với BC , qua điểm D kẻ đường thẳng d' vuông góc với AD , hai đường thẳng d và d' cắt nhau tại E .
1)chứng minh góc ABC = góc DEB
2) chứng minh AB.BD= AC. DE
3) gọi I là trung điểm của CE .chứng minh ÍA= ID
Bài 1 : Cho hình vuông ABCD. Trên tia đối BA lấy E, trên tia đối CB lấy điểm F sao cho AE = CF
a/ C/M : tam giác EDF vuông cân
b/ Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm của EF. Chứng minh O, C, I thẳng hàng
Bài 2 : Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho DB = AE. Xác định vị trí điểm D, E sao cho:
a/ DE có độ dài nhỏ nhất
b/ Tứ giác BDEC có diện tích nhỏ nhất
Bài 1: Cho góc xAy khác góc bẹt. Trên cạnh Ax lấy liên tiếp hai điểm B và C sao cho AB = 7cm, BC = 8cm. Trên cạnh Ay lấy điểm D sao cho AD =10,5cm. Nối B với D, qua C kẻ đường thẳng song song với BD cắt Ay ở E. Tính độ dài đoạn thẳng DE.
Bài 2: Cho tam giác ABC vuông tại A, AC = 5cm, BC = 13cm. Trên cạnh BC lấy điểm D sao cho BD= 7cm . Kẻ DE vuông góc với AB.
a) Tính độ dài đoạn thẳng AB.
b) Tính độ dài các đoạn thẳng BE, EA chính xác đến 0,01.
Bài 3: Cho tam giác ABC có độ dài ba cạnh là AB = 8cm, AC = 6cm, BC = 12cm. Trên tia đối của tia CA lấy điểm M sao cho CM = 3cm. Trên tia đối của tia CB lấy điểm N sao cho CN = 6cm.
a) Chứng minh: MN // AB.
b) Tính độ dài đoạn thẳng MN.
Bài 4: Cho hình chữ nhật ABCD có AB = 18cm, AD = 12cm. Gọi M là trung điểm của AB. Tia DM cắt AC tại N, cắt tia CB tại P. Tính độ dài các đoạn thẳng DM, DN, DP.
cho tam giác ABC có AB = 6 cm , AC = 9 cm , BC +12 cm . trên AB lấy điể m D sao cho BD = 4 , trên AC lấy điểm E sao cho CE = 6 cm . chứng minh rằng :
a ) tam giác ABC đồng dạng tam giác ADE
b ) tia phân giác góc A cắt DE tại K , cắt BC tại I . tính DK ?
Cho tam giác CDE có CD < CE , trung tuyến CM .Trên tia đối của tia MC lấy điểm N sao cho MN = mc
a) Chứng Minh DN= CE
b) Chứng minh góc DCM > góc ECM
c) Chứng minh CN - CE < CD
d) Lấy điểm I nằm trên cạnh DE sao cho EI = 2/3 ED . Gọi K là trung điểm của CD .Chứng minh ba điểm K,I,N thẳng hàng