Cho tam giác ABC và trung tuyến BM. Trên đoạn BM lấy d sao cho \(\dfrac{BD}{DM}=\dfrac{1}{2}\), tia AD cắt BC ở K, cắt tia Bx tại E (Bx//AC)
a/ Tìm tỷ số \(\dfrac{BE}{AC}\)
b/ Chứng minh \(\dfrac{BK}{BC}=\dfrac{1}{5}\)
c/ Tìm tỷ số diện tích của hai tam giác ABK và ABC
Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
cho tam giác ABC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)đường trung tuyến AI(I thuộc BC) cắt đoạn thẳng MN tại K. Chứng minh KM=KN
Cho hình chữ nhật ABCD, AB = 2AC. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM = CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Khi M là trung điểm của AD. Chứng minh BQ vuông góc với NP
c) Đường thẳng AP cắt DC tại điểm F. Chứng minh rằng \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)
Cho tam giác ABC cân tại A, phân giác Ax của góc BAC cắt BC tại H. Trên AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho DM = CN
a) MN cắt Bc tại I. CM: I là trung điểm của MN
b) Trung trực của MN cắt Ax tại O. CM: OC ⊥ AC
c) CM: \(\dfrac{4}{BC^2}=\dfrac{1}{AB^2}+\dfrac{1}{BO^2}\)
d) AB = 6cm; OB = 4,5cm. Tính diện tích tam giác ABC
cho tam giác ABC có AB = 6 cm , AC = 9 cm , BC +12 cm . trên AB lấy điể m D sao cho BD = 4 , trên AC lấy điểm E sao cho CE = 6 cm . chứng minh rằng :
a ) tam giác ABC đồng dạng tam giác ADE
b ) tia phân giác góc A cắt DE tại K , cắt BC tại I . tính DK ?
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn