Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN
Cho ABC. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Đường trung tuyến AI (I ∈ BC ) cắt đoạn thẳng DE tại H.
Chứng minh DH = HE.
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC có BC=3cm. Trên cạnh AB lấy điểm M sao cho AM=1/3 AB. Từ M kẻ đường thẳng song song với BC cắt AC tại N. Tính đoạn thẳng MN.
Cho hình chữ nhật ABCD, AB = 2AC. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM = CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Khi M là trung điểm của AD. Chứng minh BQ vuông góc với NP
c) Đường thẳng AP cắt DC tại điểm F. Chứng minh rằng \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)
Cho tam giác ABC và trung tuyến BM. Trên đoạn BM lấy d sao cho \(\dfrac{BD}{DM}=\dfrac{1}{2}\), tia AD cắt BC ở K, cắt tia Bx tại E (Bx//AC)
a/ Tìm tỷ số \(\dfrac{BE}{AC}\)
b/ Chứng minh \(\dfrac{BK}{BC}=\dfrac{1}{5}\)
c/ Tìm tỷ số diện tích của hai tam giác ABK và ABC
Cho tam giác ABC vuông tại A, đường cao AH. Lấy M trên AB, N trên AC sao cho \(AM=\dfrac{1}{3}AB,CN=\dfrac{1}{3}AC.\) Chứng minh \(\widehat{AMH}=\widehat{HNC}\) và \(MH\perp NH\)
Cho hình bình hành ABCD, lấy điểm M tùy ý trên cạnh AB, đường thẳng DM cắt AC tại K và cắt BC tại N
a, Chứng minh: - tam giác NMB đồng dạng với tam giác NDC
- tam giác AKD đồng dạng với tam giác CKN
b, Chứng minh KD2 =KM.KN
c, Biết NB=6cm, NC=15cm, MB= 4cm. tìm tỉ số đồng dạng của: tam giác NMB và tam giác NDC. tính diện tích của hình bình hành ABCD