lời giải hơi ngắn
Áp dụng định lí pascal biến thể cho bộ 6 ( A , B , C , A , B , C ) với AA giao BC tại A1 , BB giao AC tại B , CC giao BC tại C1 ( với AA , BB ,CC lần lượt là các tiếp tuyến tại A , B ,C ) ta có A1 , B1 , C1 thẳng hàng
lời giải hơi ngắn
Áp dụng định lí pascal biến thể cho bộ 6 ( A , B , C , A , B , C ) với AA giao BC tại A1 , BB giao AC tại B , CC giao BC tại C1 ( với AA , BB ,CC lần lượt là các tiếp tuyến tại A , B ,C ) ta có A1 , B1 , C1 thẳng hàng
1. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường trung tuyến. Kéo dài 3 trung tuyến cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\le\dfrac{9}{4}\)
2. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường cao. Kéo dài 3 đường cao cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\ge\dfrac{9}{4}\)
3. Cho tam giác ABC với O1, O2, O3 là tâm các đường trong bàng tiếp góc A, B, C. Gọi S1, S2, S3 lần lượt là diện tích các tam giác O1BC, O2CA, O3AB.
Chứng minh: \(S_1+S_2+S_3\ge3S\)
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường trong (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC và (O) lần lượt tại F và K (K≠A). Gọi L là hình chiếu cuả D lên AB.
a, C/m: Tứ giác BEDC nội tiếp và BD2 = BL.
b, Gọi J là giao điểm của KD và (O) ,(J ≠K). C/m: ^BJK=^BDE
c, Gọi I là giao điểm của BJ và ED. C/m: Tứ giác ALIJ nội tiếp và I là trung điểm của ED
Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Cmr OE vuông góc CD
Trên các cạnh CA, CB của tam giác ABC, tương ứng lấy các điểm K, L sao cho AK=BL. Các đường thẳng AL, BK cắt nhau tại P. Gọi I, J theo thứ tự là tâm đường tròn nội tiếp các tam giác APK, BPL. Phân giác trong của góc BCA cắt IJ tại Q. CMR IP = JQ
Bài 2. Cho tam giác nhọn ABC, trực tâm H nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Gọi Q là hình chiếu vuông góc của H lên AD. Chứng minh PMQN là tứ giác điều hòa.
Trong mặt phẳng toạ độ Oxy cho tam giác ABC nội tiếp đường tròn tâm I và D là chân đường phân giác trong đỉnh A của tam giác ABC biết toạ độ các đieemr A(2;6) I(-1/2;1) D(2;-3/2) biết phương trình tổng quát của đường thẳng BC
Cho tam giác ABC có góc nhọn tại A. Vẽ bên ngoài tam giác ABC các tam giác vuông cân đỉnh A là ABD và ACE. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với DE.
Cho tam giác ABC có tọa độ các điểm A(1;1),B(2;3),C(4;0)
a, viết phương trình tổng quát của đường thẳng BC
b, Viết phương trình đường tròn (C) có tâm là trọng tâm tam giác ABC và tiếp xúc với đường thẳng BC
Cho tam giác ABC nhọn, không cân , nội tiếp đường tròn (O) và ngoại tiếp (I) theo thứ tự tiếp xúc vs BC,CA,AB tại A0, B0, C0. Đtr (Oa) thuộc nửa mp bờ BC chứa A, tx BC tại A0 và tx trong vs (O) tại A1. Gọi A2 là giao của BC và AA1. Ttự có B1,B2 và C1,C2. CMR : A2,B2,C2 cùng thuộc một đường thẳng vuông góc với OI.
tthAkai HarumaNguyễn Việt Lâm Trần Huy tâm