Cho tam giác nhọn ABC (AB<AC) nội tiếp đường trong (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC và (O) lần lượt tại F và K (K≠A). Gọi L là hình chiếu cuả D lên AB.
a, C/m: Tứ giác BEDC nội tiếp và BD2 = BL.
b, Gọi J là giao điểm của KD và (O) ,(J ≠K). C/m: ^BJK=^BDE
c, Gọi I là giao điểm của BJ và ED. C/m: Tứ giác ALIJ nội tiếp và I là trung điểm của ED
Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Cmr OE vuông góc CD
Trong mặt phẳng toạ độ Oxy cho tam giác ABC nội tiếp đường tròn tâm I và D là chân đường phân giác trong đỉnh A của tam giác ABC biết toạ độ các đieemr A(2;6) I(-1/2;1) D(2;-3/2) biết phương trình tổng quát của đường thẳng BC
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Tam giác ABC có phương trình các cạnh là AB: 4x + 3y - 1 = 0, AC: 3x + 4y = 6, BC: y = 0. Tâm I của đường tròn nội tiếp tam giác ABC có hoành độ là ?
Trong mặt phẳng Oxy, cho đường tròn (C): x2+y2-2x-2y-14=0 và điểm A(2;0). Gọi I là tâm của (C). Viết pt đường thẳng đi qua A và cắt (C) tại hai điểm M, N sao cho tam giác IMN có diện tích lớn nhất.
Cho tam giác ABC có tọa độ các điểm A(1;1),B(2;3),C(4;0)
a, viết phương trình tổng quát của đường thẳng BC
b, Viết phương trình đường tròn (C) có tâm là trọng tâm tam giác ABC và tiếp xúc với đường thẳng BC