Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. M là trung điểm BC. Kẻ đường kính AP của (O).
a) Chứng minh: BHCP là hình bình hành.
b) Tia MH cắt (O) tại T, chứng minh: T, A, E, H, F đồng viên (nghĩa là cùng thuộc một đường tròn).
c) Chứng minh: AH=2OM
d) G là trọng tâm tam giác ABC, chứng minh: O, G, H thẳng hàng
Mọi người giúp em với e cần gấp ạ,mà mọi người chủ yếu làm cho em câu B thôi nha vì mấy câu còn lại em biết làm rồi (Câu B nếu dùng tứ giác nội tiếp thì cũng được nhưng mà mọi người làm được cách khác thì tốt nha ).Hình vẽ với gợi ý em để ở dưới ạ
Cho tam giác abc nhọn BE,CF là hai đường cao, H là trực tâm. Chứng minh
a) A,E,H,F cùng thuộc đường tròn tâm I
b) B,E,F,C cùng thuộc đường tròn tâm O
c) IE là tiếp tuyến tâm O
d) IO là trung trực EF
e) I,E,K,F cùng thuộc đường tròn và AH giao BC tại K
cảm phiền mọi người giúp mình với ạ!
Cho tam giác ABC nhọn AB<AC nội tiếp đường tròn (O,R) các đường cao AD, BE, CF cắt nhau tại H
a, CM: A,E,F,H nằm trên 1 đường tròn (mik đã làm)
b, AT căt ( O) tại P chứng minh HD=DP
c, Gọi M là trung điểm BC, I là trung điểm AH chứng minh I,M,E,F nằm trên 1 đường tròn
d, Chứng minh E,F,D,M cùng nằm trên 1 đường tròn
e, Gọi K là điểm đối xứng với O qua BC. CM K là tâm đg tròn ngoại tiếp tam giác BHC
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC có 3 góc nhọn và góc BAC= 45 nội tiếp đường tròn O. Hai đường cao BD, CE của tam giác ABC cắt nhau tại H, tia AH cắt BC tại F. Gọi I là trung điểm BC.
a/Chứng minh: tứ giác BEHF nội tiếp và AB.CD=CB.DF
b/Gọi M,N lần lượt là điểm đối xứng của H qua AC,AB. Chứng minh: DH=DC và M,N thuộc đường tròn O
c/Đường thẳng vuông góc với HI tại I cắt AB,AF,AC lần lượt tại S,K,T. Chứng minh: 4 điểm D,E,F,I cùng thuộc 1 đường tròn và K là trung điểm ST
Cho tam giác ABC, các đường cao AD, BE và CF. Gọi H là trực tâm của tam giác.
a) Chứng minh 4 điểm A,E,H,F cùng nằm trên 1 đường tròn xác định tâm I.
b) gọi O là trung điểm BC. Chứng minh OE là tiếp điểm của đường tròn (I).
Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
Cho tam giác ABC có cạnh BC nhỏ nhất, đường tròn (I) nội tiếp tam giác và tiếp xúc ba cạnh BC,CA,AB lần lượt tại D,E,F. Gọi M,N lần lượt là hai điểm đối xứng của C,B qua E,F. Các đường thảng BM,CN cắt EF lần lượt tại K,L. Chứng minh rằng DK// và D thuộc trung trực của Kl