cho tam giác ABC nội tiếp đường tròn O đường kính AC. Trên AB lấy D sao cho AD=3AB. tia Dy vuông góc với DC tại D cắt tiếp tuyến Ax của đường tròn (O)tại E. Gọi M là trung điểm của đoạn thẳng CD.Kẻ EI vuông góc với AD tại I
Câu hỏi : cho (O;R) từ điểm A ngoài đường tròn sao cho OA=2R. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm) A) Tam giác ABC là tam giác vuông ? Vì sao? B) chứng minh OH×OA=R^2 C) qua A kẻ đường thẳng cắt đường tròn lần lượt tại M và N(M nằm giữa A và N), xác định vị trí của AMN để AM+AN đạt giá trị nhỏ nhất. Cảm ơn rất nhiều
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = R^2 ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
5/ Cho đường tròn tâm O, bán kính OA=R. Gọi I là trung điểm của OA, đường thẳng vuống góc với OA tại I cắt đường tròn (O) tại C và D
a/ Chứng minh IC=ID b/Tính số đo \(\widehat{COA}\) c/ Tiếp tuyến tại C của đường tròn (O) cắt tia OA tại M. Tính diện tích tam giác ACM biết bán kính R=5
cho tam giác ABC vuông tại A. Trên nữa mặt phẳng chứa điểm A bờ BC vẽ tia Bx vuông góc với BC. Gọi M là trung điểm của đoạn BC. Qua M kẻ đường thẳng vuông góc với AB, cắt Bx tại O. a) Chứng minh rằng BC là tiếp tuyến của đường tròn (O;OA). b) Chứng minh rằng bốn điểm O,A,M,B cùng nằm trên một đường tròn.
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (O).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (O) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (O) cắt AB, BD lần lượt tại P. Q. Chứng minh: \(2\sqrt{PE.QF}=EF\)
cho đường tròn (O) đường kính AB=2R.Lấy điểm M thuộc đường tròn (O) (M khác A và B).Qua O kẻ đường thẳng vuông góc với AM cắt tiếp tuyến của (O) (tiếp điểm A) tại C a) c/m:tam giác AOC=tam giác MOC và MC là tiếp tuyến (O) b) Qua B kẻ tiếp tuyến với (O) cắt CM lại D. c/m tam giác COD vuông và AC.BD=R^2 c) kẻ MH vuông góc AB.C/m rằng ba đường AD,BC,MH đồng quy