Cho tam giác ABC nhọn,đường tròn tâm O,đường kính BC cắt 2 cạnh AB,AC lần lượt tại M và N.Gọi H là giao điểm của BN và CM
a)Chứng minh AH vuông góc với BC
b) Chứng minh MN<BC
c)Gọi I là trung điểm MN.Chứng minh OI vuông góc với MN
Cho tam giác ABC nhọn . Vẽ đường tròn đường kính BC cắt AB tại M , AC tại N .
a. Chứng minh BN vuông với AC , CM vuông góc với AB.
b. Gọi H là giao điểm của BN và CM. Chứng minh AH vuông với BC.
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho tam giác ABC có 3 góc nhọn. Vẽ đường tròn tâm O, đường kính BC, lần lượt cắt AB và AC tại D,E; BE cắt CD tại H. Chứng minh AH vuông góc BC
Cho ∆ABC nhọn AB < AC. Đường tròn tâm O đường kính BC lần lượt cắt cạnh
AB và AC tại E và D. Gọi H là giao điểm của BD và CE.
a.Chứng minh: các tam giác BEC và BDC là các tam giác vuông. Từ đó suy ra: H là
trực tâm của ∆ABC.
b. Qua B, dựng Bx vuông góc với AB. Qua C, dựng Cy vuông góc với AC. Gọi K là
giao điểm của Bx và Cy. Chứng minh: bốn điểm A, B, K, C cùng thuộc đường tròn
và xác định tâm I của đường tròn đó.
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Cho tam giác MNI.vẽ đường tròn đường kính NI cắt MN và MI lần lượt tại D,E.
a. Chứng minh NE vuông góc với MI , ID vuông góc với MN
b. Gọi H là giao điểm của NE và ID.Chứng minh MH vuông góc với NI
Cho tam giác ABC nối tiếp (O;R).Tính độ dài các cạnh AB,AC,biết R = 3cm và khoảng cách từ O đến AB,AC lần lượt là 2\(\sqrt{2}\) và \(\dfrac{\sqrt{11}}{2}\)cm
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho tam nhọn ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD = 2R.
a) Chứng minh tứ giác BHCD là hình hình hành.
b) Kẻ OI vuông góc với BC tại I. Chứng minh I, H, D thẳng hàng.
c) Chứng minh AH = 2OI d)\(AH^2+BC^2\)=4\(R^2\)