a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
b: \(sđ\stackrel\frown{AC}=2\cdot60^0=120^0\)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
b: \(sđ\stackrel\frown{AC}=2\cdot60^0=120^0\)
\(\rightarrow\) Gấp Ạ!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF ( bỎ QUA phần này cũng đc ạ )
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF cắt nhau tại H. Vẽ tiếp tuyến của đường tròn O tại A. Đường thẳng EF cắt đường tròn O tại I Và K a) CM: các tứ giác BFHD,BFEC nội tiếp b) CM:EB là tia phân giác của góc FED c)CM: OA vuông góc IK d) gọi S là tâm đường tròn ngoại tiếp tam giác BCE,đường thẳng vuô g góc với HS tại S cắt AB tại P, cắt AC tại Q và cắt AD tại G. Chứng minh PG=GQ
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF
Cho \(\Delta ABC\) nhọn (AB<AC) nội tiếp đường tròn (O). các đường cao BE, CF cắt nhau tại H. Gọi D là giao điểm của AH và BC. Tiếp tuyến tại A của (O) cắt BC tại F
a) Chứng minh tứ giác AEHF nội tiếp và \(\widehat{EAH}=\widehat{EBC}\)
b) Đường kính AK của (O) cắt EF tại M, cắt BC tại N. Tiếp tuyến tại K của (O) cắt AH tại Q. Chứng minh HM // QN
c) Gọi I là trung điểm BC. Đường tròn đường kính AH cắt AI tại P. Chứng minh SA = SP
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) , 2 đường cao BE và CF của tam giác ABC cắt nhau tại H . đường thẳng AH cắt BD tại D và cắt (O;R) tại điểm M
a, chứng minh BC là p/g góc EMB
b, gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF . chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE
c, khi 2 điểm B,C cố định và điểm A di động trên (O;R) nhứng vẫn thỏa mãn tam giác ABC nhọn . chứng minh OA vuông góc với EF . xác định vị trí A để tổng DE+EF+FD đtặ giá trị nhỏ nhất
Cho tam giác ABC (AB<AC) nội tiếp đường tròn O ,2 đường cao BE và CF cắt nhau tại H
a) chứng minh : các tứ giác BCEF , tứ giác AEHF nội tiếp
b) tia BE,CF cắt đường tròn theo thứ tự tại MN . chứng minh MN song song EF
c) Gọi K là giao điểm OA và MN . chứng minh tứ giác HEKF là hình bình hành
Cho tam giác ABC có 3 góc nhọn( AB < AC ) và nội tiếp đtròn (O). Gọi BE,CF là các đường cao và H là trực tâm của tam giác ABC. CM a.Đường tròn ngoại tiếp tứ giác AEHF và đtròn O tại điểm thứ hai I ( I ko trùng A).CM IBC đồng dạng IFE b.Hai đường thẳng BC và EF cắt nhau tại k. Cm 3 điểm A,I,K thẳng hàng Giúp tớ voi ạ
Bài 5:Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O,các đường cao AG,BE,CF cắt nhau tại H
a)Chứng minh tứ giác AEHF nội tiếp đường tròn,
b)Từ B kẻ tiếp tuyến Bx của đường tròn.Hãy tính góc ABC khi góc bằng 65 độ
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.
a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.
b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.