Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quynh

Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.

a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.

b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.

Ami Mizuno
8 tháng 2 2022 lúc 7:25

a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA

Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC

b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))

Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))

\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)

\(\Rightarrow\)MN//EF (đpcm)

Nguyễn Lê Phước Thịnh
8 tháng 2 2022 lúc 7:14

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Đăng
26 tháng 2 2023 lúc 21:23

rei

 


Các câu hỏi tương tự
25 Phúc 9/3
Xem chi tiết
Kim Taehyungie
Xem chi tiết
𝖈𝖍𝖎𝖎❀
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
Nguyễn Viễn
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
học giỏi nhất web
Xem chi tiết