Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
a) Chứng minh rằng \(CD\perp AB,BE\perp AC\)
b) Gọi K là giao điểm của BE, CD. Chứng minh rằng AK vuông góc với BC
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
cho △ABC nhọn vẽ (O) đường kính BC cắt các cạnh AB,AC thao thứ tự D,E.
a, C/m CD⊥AB, BE⊥ AC.
b, gọi K là giao điểm của CD và BE . C/ m AK⊥ BC.
c, C/m góc BAK = góc BED
d, C/m BK.DE + CK.CD= BC2
Cho tam giác nhọn abc nội tiếp đường tròn, các đường cao be , cf cắt nhau tại h . kẻ đường kính ak A các tam giác abk và ack là tam giác gì vì sao B chứng minh tứ giác bhck là hình bình hành C kẻ oi vuông góc với bc tại i . cm h,i,k thẳng hàng
Cho tam giác ABC vẽ (O) đường kính BC cắt các cạnh AB,AC lần lượt tại D và E.Gọi H là giao điểm của BE và CD
a) Chứng minh CD⊥AB,BE⊥AC
b) AH⊥BC
cho đường tròn (O) đường kính A.Trên đường tròn lấy điểm C sao cho AC<BC (C khác A).các tiếp tuyến tại B và C của đương tròn tâm O cắt nhau ở điểm D.AD cắt đường tròn tâm O tại E (E khác A).DO cắt BC tại F
a) Chứng minh BC vuông góc OD
b) chứng minh DF.DO=DE.DA
Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC. Gọi M, N, P, Q theo thứ tự là trung điểm của DE, DC, BC, BE.
Chứng minh rằng bốn điểm M, N, P, Q thuộc cùng một đường tròn ?
Cho ( O;R) đường kính AB lấy điểm C thuộc ( O;R) sao cho AC= R. a) Chứng minh tam giác ABC vuông. b) Tính BC theo R và tính số đo góc A, góc B