Cho ΔABC, đg cao AH. Lấy I tùy ý trên AH (≠ A, H). Đường thẳng BI cắt AC tại M; đường thẳng CI cắt AB tại N. Qua I kẻ d song2 vs BC, ns cắt AB, NH, MH, AC lần lượt tại E, R, S, F.
a) S2: \(\dfrac{IR}{IE}\) với \(\dfrac{CH}{CB}\); \(\dfrac{IS}{IF}\) với \(\dfrac{BH}{BC}\)
b) C/m rằng: RHS là Δ cân.
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
Cho tam giác ABC có AB = 18 cm, AC = 12 cm, BC = 9 cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3 cm. Qua D kẻ đường thẳng song song với AB cắt tia AC tại E. Gọi F là giao điểm của AD và BE. Tính: a) Độ dài CE, DE
Cho tam giác ABC cân tại A, BC = 8cm, phân giác của góc B cắt đường cáo AH ở K, AK/AH = 3/5 a) Tính độ dài AB b) Đường thẳn vuông góc với BK cắt AH ở E. Tính EH
Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
cho TAM GIÁC abcd có am là trung tuyến và điểm e thuộc đoạn thẳng mc. qua e kẻ đường thẳng song song với ac, cắt ab ở d và cắt am ở k. qua e kẻ đường thảng song song với ab, cắt ac ở f. chứng minh cf=dk
1. Cho tam giác ABC có BC=3cm, trên tia đối tia AB lấy D sao cho AD=2AB, trên tia đối AC lấy E sao cho AE=2AC. Tính DE?
2. Cho tam giác ABC có AB= 12 cm. Trên cạnh AB lấy điểm D sao cho DB= 4cm. Kẻ DH và BK cùng vuông góc với AC tại H và K. Tính \(\dfrac{DH}{BK}\)
3. Cho tam giác MBC. Trên cạnh MB lấy điểm A sao cho MA= 2AB. Qua A vẽ đường thẳng song song với BC cắt MC tại D, biết AD= 18 cm. Tính BC?
4. Cho tam giác ABC. Điểm M trên cạnh BC sao cho MB= 2MC. Điểm N trên cạnh AC sao cho CA= 3CN.
a) Cm: AB= 3CN.
b) AM cắt BN tại G. Cm: GA = 3GM
5. Cho tam giác ABC, kép dài BA thêm 1 đoạn sao cho AE= \(\dfrac{1}{2}AB\); kéo dài CA thêm 1 đoạn sao cho AE= \(\dfrac{1}{2}AC\) Đường trung tuyến AI của tam giác ABC cắt DE tại K. Cm: K là trung điểm DE.
Cho tam giác ABC nhọn . Đường Cao AH . Điểm M thuộc BC . Kẻ MK Vuông góc AB ,ML vuong góc AC ( K thuộc AB, L thuộc AC). Đuờng thẳng qua A va vuông góc AM cắt MK ,ML theo thứ tự ở EF . Từ B kẻ đường thẳng vuông góc CE , cắt AH tại I . Chứng minh rằng :. a TG AIB đồng dang TG MCF b EM/FM =ML/KM và BM/FM=AI/AC. c 3 đường thẳng AH,BF,CE đồng quy