Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mai Nhan Ngọc

Cho tam giác ABC nhọn. Gọi D,E,F lần lượt là trung điểm của các cạnh AB, AC,BC. Vẽ đường cao AH. Chứng minh:

a) A và H đối xứng nhau qua DE

b) Chứng minh: DF = HE

c) Chứng minh: DEFH là hình thanh cân

giúp Ngọc với ạ!

Nguyễn Đào Phương Anh
24 tháng 9 2016 lúc 17:49

a) Gọi I là giao điểm của AH và ED

Xét tam giác ABC có:

E là trung điểm AC

D là trung điểm AB

Vậy: ED là đg tr/bình của tam giác ABC

=> ED // BC (t/chất đg tr/bình của tam giác)

Mà: AH vuông góc BC

=> AH vuông góc ED (từ vuông góc đến //)   (1)

Xét tam giác ABH có:

D là tr/điểm AB

ID // BC (I thuộc ED; ED // BC)

Vậy: I là tr/điểm AH (2)

Từ (1) và (2) 

=> A và H đối xứng nhau qua DE

b) Vẽ đường cao FQ (trong DEFH ý)

Có: IH vuông góc ED

       FQ vuông góc ED

Vậy: IH // FQ (từ vuông góc đến //)

Có: DE // BC

Mà: HF thuộc BC

 => HF // DE

=> DEFH là h/thang 

Xét tam giác EIH và tam giác DQF có:

IH = FQ (IH và FQ là đg cao của h/thang DEFH) (P/s: 2 đường cao hạ từ đỉnh xuống cạnh đối diện với điều kiện 2 cạnh đó phải // thì 2 đg cao đó sẽ = nhau)

Góc I = góc Q (=90 độ)

Góc EHI = góc QFD (2 góc đồng vị)

Vậy: tam giác EIH = tam giác DQF (g-c-g)

=> HE = FD (2 cạnh tương ứng)

c) Có: DEFH là hình thang (c/minh ở câu b)

         Góc IEH = góc QDF (tam giác EIH = tam giác DQF)

Vậy: Hình thang DEFH là h/thang cân

 


Các câu hỏi tương tự
Nguyễn Mai Nhan Ngọc
Xem chi tiết
Mai Hồ Diệu Thy
Xem chi tiết
Po Nguyen
Xem chi tiết
Phương Anh Nguyễn Thị
Xem chi tiết
Dennis
Xem chi tiết
Đặng Huỳnh Trâm
Xem chi tiết
Majimy Madridista Jmg
Xem chi tiết
SK-Kuro Micae
Xem chi tiết
UZUMAKI NARUTO
Xem chi tiết