a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
mà BD=AE(Hai cạnh đối trong hình bình hành ABDE)
nên \(\dfrac{AE}{DC}=\dfrac{AB}{AC}\)(đpcm)
b) Ta có: AE//BD(Hai cạnh đối của hình bình hành ABDE)
nên AE//BC(C∈BD)
hay \(\widehat{MAE}=\widehat{MCB}\)(hai góc so le trong)
Xét ΔMAE và ΔMCB có
\(\widehat{MAE}=\widehat{MCB}\)(cmt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
Do đó: ΔMAE∼ΔMCB(g-g)