Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM // AC. (M thuộc AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH vuông góc MN, AH cắt BC tại E. CM: BE = EC
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM // AC. (M thuộc AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH vuông góc MN, AH cắt BC tại E. CM: BE = EC
Bài 4: Cho tam giác ABC nhọn ( AB < AC ) . Đường cao AH . Gọi M; P; Q thứ tự là trung điểm của BC ; CA ; AB .
a) Chứng minh PQ là trung trực của AH .
b) Tứ giác MPQH là hình gì?
Bài 6: Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE⊥AB; HF⊥AC (E∈AB; F∈AC). Gọi I là trung điểm của BC.
a) Chứng minh rằng: EF = AH.
b) AI ⊥ EF.
c) Gọi M là trung điểm của HB, N là trung điểm của HC. Chứng minh rằng EMNF là hình thang vuông.
Cho tam giác ABC vuông tại A, AH là đường cao, kẻ HN vuông góc với AC, HM vuông góc với AB. a) Chứng minh AMHN là hình chữ nhật. b) D đối xứng với H qua M, E đối xứng với H qua N. Chứng minh AMNE là hình bình hành. c) Chứng minh A là trung điểm của DE
cho tam giác ABC vuông tại A (AB>AC) đường cao AH , trung tuyến AM. Gọi N và E lần lượt là trung điểm của AC,AB
a, tứ giác MENH là hình gì? vì sao
b, CM: HE vuông góc HN
c, Từ A kẻ đường thẳng song song với BC cắt ME và MN lần lượt ở K và F . Tứ giác AMBK là hình gì? vì sao
d, Tam giác ABC cần đk gì thì tứ giắc AFCM là hình vuông
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N∈∈AC), DM // AC. (M∈∈AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH ⊥⊥ MN, AH cắt BC tại E. CM: BE = EC
cho tam giác nhọn ABC (AB<AC). gọi lần lượt là trung điểm của AB,AC và BC. Kẻ AH vuông gốc với BC tại H, AH cắt DE tại M.
1) chứng minh rằng : DM/BH.
2) chứng minh rằng : M là trung điểm AH và tam giác AEH cân
3) trên tia đối của tia DH lấy điểm K sao cho DH=DK. chứng minh rằng, tứ giá DEFH lầ hình thang cân và tứ giác KACB là hình vuông.
4) giả sử AB=AF. chứng minh rằng : ba điểm K,M,F thẳng hàng
cho tam giác ABC có 3 gọc nhọn AB<AC các đường cao BE,CF cắt nhau tại H gọi M là trung điểm BC , K là điểm đối xứng với H qua M a,chứng minh tứ giác BHCK là hình bình hànhb, BKvuông góc với AB và CK vuông góc với ACc, gọi I là điểm đối xứng với H qua BC . chứng minh tứ giác BIKC LÀ hình thang când, Bk cắt HI ở G tam giác ABC phải cs thêm điều kiện gì để tứ giác GHCK là hình thang cân