Chứng minh rằng tam giác AEF và tam giác ABC đồng dạng
Chứng minh rằng tam giác AEF và tam giác ABC đồng dạng
Cho tam giác ABC nhọn có 3 góc nhọn , các đường cao AD ; BE ; CF cắt nhau tại H . Chứng minh :
a. AE.AC = AF.AB
b.tam giác AEF đd tam giác ABC ; tam giác DBF đd tam giác DEC
c. tam giác HEF đd tam giác HBC
d.chứng minh:BF.BA+CE.CA=BC^2
Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2
Cho tam giác ABC nhọn ( AB < AC ) có hai đường cao BE, CF cắt nhau tại H.
Gọi D là giao điểm của AH và BC.
Chứng minh tam giác AEB đồng dạng tam giác AFC và AH. CD = HE. AC
Chứng minh DA là phân giác của góc EDF
hai đường cao ad và be của tam giác abc cắt nhau tại h. chứng minh rằng: a) tam giác adc và tam giác bec là hai tam giác đồng dạng b) ha.hd=hb.he
Cho ▲ABC nhọc đường cao AD, BE và CF cắt nhau tại( D ∈BC;E∈AC; F∈AB). Chứng minh
a. Tam giác ABD đồng dạng tam giác AHF và AF.AB=AH.AD
b.AF.AB=AE.AC và tâm giác AEF đồng dạng Tam giác ABC
c. FC là phân giác của góc EFD và Bc^2=BH.BE+CH.CF
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BD VÀ CE cắt nhau tại H.
a) chứng minh tam giác ABD đồng dạng tam giác ACE và AExAB=ADxAC
b) chứng minh tam giác ABC đồng dạng tam giác ADE
c) đường phân giác kẻ từ A của tam giác ABC cắt DE và BC lần lượt tại M và N. Giả sử AD=1/2AB. Chứng minh M là trung điểm AN