Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bích Khuê Ngô

Cho tam giác ABC nhọn (AB<AC), đường tròn tâm O đường kính BC cắt AB tại D , AC tại E .Gọi G là giao điểm của BE và CD, F là giao điểm của AH và BC

a, Chứng minh ED.AB = AE.BC

b,Chứng minh BD.BA + CE.CA = BC^2

(Cho các tứ giác ADHE, BDHF, ABFE, CEHF, ACFD nội tiếp)

Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 10:04

a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔADC

Suy ra: AE/AD=AB/AC

hay AE/AB=AD/AC

Xét ΔAED và ΔABC có

AE/AB=AD/AC

góc EAD chung

Do đó: ΔAED\(\sim\)ΔABC

Suy ra: AE/AB=ED/BC

hay \(AE\cdot BC=ED\cdot AB\)

b: Xét ΔBDC vuông tại D và ΔBFA vuông tại F có

góc FBA chung

Do đó: ΔBDC\(\sim\)ΔBFA
Suy ra: BD/BF=BC/BA

hay \(BD\cdot BA=BF\cdot BC\)

Xét ΔCEB vuông tại E và ΔCFA vuông tại F có

góc FCA chung

Do đó: ΔCEB\(\sim\)ΔCFA
Suy ra CE/CF=CB/CA

hay \(CE\cdot CA=CB\cdot CF\)

\(BD\cdot BA+CE\cdot CA=BF\cdot BC+CF\cdot BC=BC^2\)


Các câu hỏi tương tự
dilan
Xem chi tiết
NGỌC LINH
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Eros Starfox
Xem chi tiết
Ngưu Kim
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Xuân Hùng Hoàng
Xem chi tiết
Ctuu
Xem chi tiết
Gia Bo Phan Nguyen
Xem chi tiết