Bài 7: Trường hợp đồng dạng thứ ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chauu Arii

Cho tam giác ABC nhọn (AB<AC) có hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng: a) AF . AB = AE . AC; b) HB . HE = HF . HC; c) BF . BA = BH . BE; d) CH . CF = CE . CA; e) EB . EH = EA . EC; f) FC . FH = FA . FB. Xin hãy giúp mình với ạ. Xin cảm ơn!

Du Xin Lỗi
26 tháng 2 2023 lúc 21:30

A B C H E F

a)Xét tam giác ABE và tam giác ACF có:

\(\widehat{AFC}=\widehat{AEB}\)

\(\widehat{A}\) chung

=> tam giác ABE và tam giác ACF đồng dạng

\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)

đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3

Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 21:48

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE

c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có

góc FBH chung

=>ΔBFH đồng dạng với ΔBEA

=>BF/BE=BH/BA

=>BF*BA=BH*BE

d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>CE*CA=CF*CH

 


Các câu hỏi tương tự
Phương Thảo
Xem chi tiết
Võ Nữ Đan Ly
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Lê Khánh Đăng
Xem chi tiết
Hoa Phan
Xem chi tiết
Ctuu
Xem chi tiết
Nhue
Xem chi tiết
Trùm Trường
Xem chi tiết
pansak9
Xem chi tiết