Bài tập1: Cho ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho MA = ME. Chứng minh rằng:
a) AB = CE.
b) AB // CE.
c) Từ C kẻ tia Cx // AB. Vẽ đường thẳng đi qua B và trung điểm I của cạnh AC cắt Cx tại D. Chứng minh : BI = DI.
giải giúp mình với mình đang cần gấp cảm ơn các bn trước nha
cho tam giác ABC,AB<AC.M là trung điểm của BC.trên tia đối của MA lấy điểm I sao cho MA=MI.Kẻ BH và CK vuông góc với AI. Chứng minh BH=CK.BH cắt AC tại E.CK cắt BI tại F.Chứng minh 3 điểm E,M,F thẳng hàng
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho tam giác ABC vuông tại A ,góc ABC bằng 50 Độ a Tính góc ACB b Kẻ tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E Sao cho BA=BE.Chứng minh tam giác BAD =tam giác BED từ đó suy ra DE vuông góc với BC c Gọi M Là giao điểm của AB và PE CMR: DM=DC
Cho tam giác ABC, M là trung điểm BC .Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m
a) Tam giác AMB = tam giác DMC
b) CD//AB
c) Trên cạnh AB lấy điểm E, trên cạnh DC lấy điểm F sao cho AE=DF. C/m ba điểm E,M,F thẳng hàng
cho tam giác ABC gọi M,N,P lần lượt là trung điểm của AB,AC,BC trên tia đối NP lấy Q sao cho NP=NQ , trên tia đối PM lấy E sao cho PM=ME
a chứng minh: 3 điểm A,E,Q thẳng hàng
b chứng minh: BE=QC,BE//QC
C chứng minh: AP,EC,QB đồng quy tại 1 điểm
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
Cho ABC có Đ là Trung điểm của BC. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Bx//AC, Bx cắt AD ở E a, chứng minh tam giác ADC=tam giác EDB b, Trên tia đối của tia AC, lấy điểm F sao cho AF=AC. Gọi I là giao điểm của AB và EF. Chứng minh tam giác AIF= tam giác BIE.