Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà \(BP=\dfrac{BC}{2}\)
nên MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà \(BP=\dfrac{BC}{2}\)
nên MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho tam giác ABC, M, N, P lần lượt là trung điểm của AB, AC, BC.
Chứng minh BMNP là hình bình hành
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.
cho tam giác abc có m,n,q lầm lượt là trung điểm của ab ,ac ,bc chứng minh rằng tứ giác mnqb là hình bình hành
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho tam giác ABC nhọn có AB < AC. Gọi D, E, F lần lượt là trung điểm của AB, AC, BC.
Chứng minh tứ giác BDEF là hình bình hành?
Cho tam giac ABC có AB<AC . Lấy D, E lần lượt là trung điểm của AB, AC.
d) Chứng minh tứ giác BDEC là hình thang.
e) Gọi M là điểm đối xứng của B qua E. Chứng minh: Tứ giác ABCM là hình bình hành.
f) Gọi N là điểm đối xứng của C qua D. Chứng minh ba điểm N, A, M thẳng hàng.