a)Xét tam giác ADME có góc MDA=90(gt)
góc DAE=90(gt)
góc AEM=90(gt)
=>ADME là hình chữ nhật
b) Ta có ADME là hình chữ nhật
=>AD//ME hay AD//EQ(1)
=>AD=ME
Mà ME=EQ
=> AD=EQ(2)
Từ (1) và (2)=> AQED là hình bình hành
a)Xét tam giác ADME có góc MDA=90(gt)
góc DAE=90(gt)
góc AEM=90(gt)
=>ADME là hình chữ nhật
b) Ta có ADME là hình chữ nhật
=>AD//ME hay AD//EQ(1)
=>AD=ME
Mà ME=EQ
=> AD=EQ(2)
Từ (1) và (2)=> AQED là hình bình hành
cho tam giác ABC nhọn (AB<AC) đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D
a, cm tứ giác AHCK là hình chữ nhật
b, Gọi I,E lần lượt là trung điểm của BC và AB cm tứ giác EDCI là hình bình hành
c, tứ giác EBHI là hình thang cân
d, AH cắt DE tại M, BM cắt HE tại N,AN cắt BC tại L. Gọi O là trung điểm của MI , B là điểm đối xứng của L qua N cm C,O,N thẳng hàng
Cho tam giác ABC cân tại A đường cao AM gọi i là trung điểm ac, k là điểm đối xứng m qua i A. Chứng minh rằng tứ giác AMCK là hình chữ nhật B. Biết Ab=cm,BC=6cm tính diện tích tứ giác AKCM C. Từ i kẻ iH vuông góc AM Thuộc AM, chứng minh 3 điểm B,H,K thẳng hàng
Cho tam giác ABC vuông cân tại A, AC = 4cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC
a) Tứ giác ADME là hình gì ? Tính chu vi của tứ giác đó
b) Điểm M ở vị trí nào trên cạnh BC thì đoạn thẳng DE có độ dài nhỏ nhất ?
cho tam giác ABC vuông tại A, gọi I là trung điểm của BC, Từ I kẻ IM vuông góc AB ( M thuộc AB), kẻ IN vuông góc AC (N thuộc AC)
a) chứng minh tứ giác AMIN là hình hình chữ nhật
b) gọi D là điểm đối xứng với a qua I. Tứ giác ABDC là hình gì
c) tìm điều kiện của tam giác ABC để hình chữ nhật AMIN là hình vuông
Cho tam giác ABC vuông cân tại A. Qua điểm D ϵ cạnh BC, kẻ đường thẳng vuông góc với BC, cắt cạnh AB, AC theo thứ tự ở E và F. Gọi M, N là thứ tự theo trung điểm của BE và CF. CMR:
a) Tứ giác AMDN là hình chữ nhật?
b) AD=MN?
Cho tam giác ABC vuông tại A. Qua B kẻ Bx vuông góc với AB, qua C kẻ Cy vuông góc AC. Gọi D là giao điểm của Bx và Cy.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Vẽ M đối xứng với B qua A, N đối xứng với C qua A. Chứng minh tứ giác BCMN là hình thoi và AD = MC.
c) Gọi E, F thứ tự là trung điểm của AC và MN. Chứng minh EF// ND.
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD