Xét ΔCBA có DE//AB
nên CE/EA=CD/DB=2/3
=>CE/2=EA/3=(CE+EA)/(2+3)=10/5=2
=>CE=4cm; EA=6cm
Xét ΔABC có AD là phân giác
nên AB/AC=BD/CD
=>AB/10=7,5/5=3/2
=>AB=15cm
Xét ΔCBA có DE//AB
nên DE/AB=CD/CB
=>DE/15=2/5
=>DE=6cm
Xét ΔCBA có DE//AB
nên CE/EA=CD/DB=2/3
=>CE/2=EA/3=(CE+EA)/(2+3)=10/5=2
=>CE=4cm; EA=6cm
Xét ΔABC có AD là phân giác
nên AB/AC=BD/CD
=>AB/10=7,5/5=3/2
=>AB=15cm
Xét ΔCBA có DE//AB
nên DE/AB=CD/CB
=>DE/15=2/5
=>DE=6cm
Cho tam giác ABC (CA=CB), đường cao BD. Trên các cạnh BA,BC lấy tương ứng ở hai điểm E và F sao cho BE=BF=BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N , cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB,BC nếu biết EM=9cm, FN=12cm và IK=6cm.
Cho tam giác ABC vuông tại A, AB < AC. AB= 3cm, AC= 4cm. Đường phân giác BD.
a, Tính BC, AD, CD
b, Qua D kẻ đường thẳng song song với AB cắt BC tại K. Chứng minh: BK.BC = AB.CK
c, Qua D kẻ đường thẳng vuông góc với BD cắt BD, AB và đường thẳng AC lần lượt tại E,G,H. Chứng minh \(\dfrac{CH}{BH}=\dfrac{KD}{AG}\)
Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC=75cm.
Cho tam giác cân ABC (CA = CB), đường cao BD. Trên các cạnh BA, BC lấy tương ứng hai điểm E và F sao cho BE = BF = BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB, BC nếu biết EM = 9cm, FN = 12cm và IK = 6cm.
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC.
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
Cho tam giác abc có AB = 3cm, BC = 7cm, BD là đường phân giác (D thuộc AC). Kẻ AH, CK vuông với BD.
a) Chứng minh tam giác AHD ~ tam giác CKD.
b) Chứng minh Ad.BK = BC.BH.
c) Qua trung điểm I của AC kẻ đường thẳng song song BD cắt BC tại M, cắt tia AB tại N. Chứng minh AN = CM.
d) Chứng minh Sabc = 5Sbdi
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM