Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
cho tam giác ABC vuông tại A đường cao AH
a)Chứng minh tam giác ABC đồng dạng cới tam giác HCA. Từ đó suy ra AC.AH=CH.AB
b)Tia phân giác của góc ACB cắt AH tại D. Biết CH=9cm; AC=15cm.
Tính AD;HD
c)Tia Phân giác của góc HAB cắt Bc tại I. Chứng minh ID //AB
cho tam giác abc vuông tại a, đường cao ah , phân giác ad . kẻ hk // ab , hp//ac .
a/ chứng minh akhp là hình chữ nhật
b/ chứng minh ac.bd = ab.cd
c/ biết ab=3cm , ac=4cm . tính kp và diện tích tam giác ahd
Cho ∆ABC nhọn, đường cao AH, trung tuyến AD. Từ D kẻ DK vuông góc AB (K thuộc AB) và DI vuông góc AC (I thuộc AC).
a) Chứng minh: BK . BA = BH . BD
b) Chứng minh ∆ BKH đồng dạng với ∆ BDA.
c) Giả sử BH = 2/3AB và diện tích ∆BKH là 64cm^2 . Tính diện tích ∆BDA.
d) Chứng minh: DK/DI = AC/AB
Tam giác ABC vuông tại A có đường cao là \(AD\left(D\in BC\right)\). Từ D, kẻ DE vuông góc với \(AB\left(E\in AB\right)\) và DF vuông góc với \(AC\left(F\in AC\right)\)
Hỏi rằng, khi độ dài các cạnh AB, AC thay đổi thì tổng \(\dfrac{AE}{AB}+\dfrac{AF}{AC}\) có thay đổi hay không ? Vì sao ?
Cho tam giác ABC cân tại A. Phân giác góc C cắt AB tại D. Biết AC = 24cm, BC = 12cm.
a) Tính AD, DB.
b) Đường thẳng vuông góc với CD tại C cắt đường thẳng AB kéo dài tại E. Tìm BE.
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a
Cho tam giác ABC vuông tại A,AB=12,AC=16cm,phân giác AD
a)Tính BC,CD,BD
b)Vẽ đường cao AH.Tính AH,HD,AD
Cho tam giác abc có CB<CA và góc CBA>90 độ. Điểm D nằm giữa hai điểm A và C sao cho CBD=BAC
a)cm tam giác ABC đồng dạng với tam giác BDC
b) Tia phân giác của góc ACB cắt BA tại E và BD tại F. chứng minh FD/FB=EB/EA
c) Đường thẳng vuông góc với CE tại C cắt đường thẳng AB tại H. cm HE.EA=HA.EB