§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hân Gia Bảo

Cho tam giác ABC đỉnh B(3;5) đường cao AH: 2x-5y+3=0, trung tuyến kẻ từ C có pt: x+y-5=0

Tính tọa độ A

Đào Ngọc Hoa
6 tháng 10 2017 lúc 22:33

\(C\left(x_C;y_C\right)\) thuộc đồ thị hàm số \(x+y-5=0\) nên ta có \(x_C+y_C-5=0\)

\(\Leftrightarrow y_C=-x_C+5\Rightarrow C\left(x_C;-x_C+5\right)\)

phương trình đường thẳng BC có dạng \(y=ax+b\)

Vì đths \(y=ax+b\) vuông góc vs đths \(2x-5y+3=0\) nên ta có \(a.\dfrac{2}{5}=-1\Leftrightarrow a=\dfrac{-5}{2}\)

Vì B, C thuộc đths \(y=\dfrac{-5}{2}x+b\) nên ta có:

\(\left\{{}\begin{matrix}\dfrac{-5}{2}.3+b=5\\\dfrac{-5}{2}.x_C+b=-x_C+5\end{matrix}\right.\)

\(\Rightarrow\dfrac{-5}{2}\left(3-x_c\right)=x_c\)

\(\Rightarrow x_c=5\Rightarrow C\left(5;-10\right)\)

Vì A thuộc đths 2x-5y+3=0 nên ta có \(2x_A-5y_A+3=0\)(1)

Gọi M là trung điểm của AB, ta có \(\left\{{}\begin{matrix}x_M=\dfrac{x_A+3}{2}\\y_M=\dfrac{y_A+5}{2}\end{matrix}\right.\)\(\Rightarrow M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\)

\(M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\) thuộc đths x+y-5=0 nên ta có\(\dfrac{x_A+3}{2}+\dfrac{y_A+5}{2}-5=0\)

\(\Leftrightarrow x_A+3+y_A+5-10=0\)

\(\Leftrightarrow x_A+y_A-2=0\)(2)

Từ (1), (2), ta có \(\left\{{}\begin{matrix}2x_A-5y_A+3=0\\x_A+y_A-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_A=1\\y_A=1\end{matrix}\right.\Rightarrow A\left(1;1\right)\)


Các câu hỏi tương tự
Hiếu Văn Huỳnh
Xem chi tiết
Tinh Minh Trang
Xem chi tiết
Võ Mai Quân
Xem chi tiết
Chu Nguyen
Xem chi tiết
🍀thiên lam🍀
Xem chi tiết
Lê Ngọc Trâm
Xem chi tiết
Yến Hoàng
Xem chi tiết
Phạm Hồng Vân
Xem chi tiết
Lê Thị Mỹ Dung
Xem chi tiết