Cho tam giác ABC, các đường cao AD,BE và CF. Gọi H là trực tâm
a) Chứng minh 4 điểm A,E,H,F cùng thuộc 1 đường tròn, Gọi I là tâm của đường tròn đó, hãy xác định I
b) Gọi O là trung điểm BC, chứng minh OE là tiếp tuyến của (I)
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KE.KF=KB.KC
c) Gọi M là giao điểm của AK và (O). Chứng minh góc KAC= góc KFM
d) Chứng minh M;H;I thẳng hàng
Cho ΔABC có 3 góc nhọn nội tiếp (O ;R) các đường cao AD,BE cắt nhau tại H , kéo dài BE cắt (O) tại F
a, cm : tg CDHE nội tiếp
b, Gọi M là trung điểm của AB
cm : ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE
c, Cho BC cố định và BC = R \(\sqrt{3}\)
Xác định vị trí của A trên (O) để DH.DA đạt GTLN
Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.
cho đường trong (O;R) và 1 điểm M sao cho OM=2R. Qua M vẽ hai tiếp tuyến MA,MB (A,B là 2 tiếp điểm). Lấy điểm C bất lì thược cung AB, tiếp tuyến tại C cắt MA và MB lần lượt tại E và F
a) CM EF= EA+FB
b) Tính chu vi tam giác MÈ theo R
c) Tính góc EOF
d) Gọi I cà K lần lượt là giao điểm của OE và OF với AB . CM 4 điểm F,I,O,B cùng thuộc 1 đường tròn
e) Khi sđ cung BC =90 độ . Tính độ dài EF và diện tích tam giác OIK theo R
giải gấp dùm với ạ !!!
cho đường tròn (O; R) hai đường kính AB và CD vuông góc với nhau, trên cung nhỏ BC lấy I, IA cắt CD rại F. Tiếp tuyến tại I cắt AB tại E. a) Chứng minh ID phân giác góc AIB. b) Chứng minh 4 điểm B,I,F,O cùng thuộc 1 đường tròn. c) Tính EB,EA theo R
Cho đường tròn \(\left(O,\dfrac{AB}{2}\right)\) ,CD là đường kính thứ 2 của đường tròn xy là tiếp tuyến (O) tại B. Gọi E,F lần lượt là giao điểm của AC,AD với xy.
a,C/m: \(EB\cdot BF=AB^2\)
b,C/m: Tứ giác ECDF là nội tiếp
c,Gọi I là tâm đường tròn ngoại tiếp tứ giác ECDF
Tìm tập hợp các điểm I khi đường kính CD thay đổi