Trong tam giác đều thì trực tâm đồng thời là trọng tâm
\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=\frac{2}{3}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{3}\)
Đặt \(x=\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\Rightarrow x^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}\)
\(x^2=AB^2+AC^2+2AB.AC.cos\widehat{A}=a^2+a^2+2a^2.cos60^0\)
\(\Rightarrow x^2=3a^2\Rightarrow x=a\sqrt{3}\)
\(y=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=BC=a\)