Cho tam giác ABC đều, đường cao AD, trực tâm H. M là điểm bất kỳ trên cạnh BC. Gọi E, F thứ tự là hình chiếu của M trên AB và AC. Gọi I là trung điểm của AM. ID cắt EF tại K. a) DEIF là hình gì? b) CM: M, K, H thẳng hàng. c) Xác định vị trí của M trên BC để EF đạt GTNN. d) Tìm GTNN của SDEIF biết tam giác ABC có cạnh bằng a. e) Tìm quỹ tích điểm K
help me giải vs
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
Cho đường tròn tâm Ở, kẻ tia tiếp tuyến Ax. Trên tia Ax lấy điểm M sao cho AM = R√3. vẽ tiếp tuyến MC( C là tiếp điểm). Đường vuông góc với AB tại Ở cắt BC tại D. a) Cm BD// OM b) xác định tứ giác OBDM c) xác định tứ giác AODM D) gọi E là giao điểm của AD với OM. Gọi F là giao điểm của MC với OD. Chứng minh EF là tiếp tuyến của 0
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
Cho tam giác ABC vuông tại A, biết , BC = 10 cm .
a)Giải tam giác vuông ABC ?
b)Vẽ đường cao AH, đường trung tuyến AM . Tính độ dài AH, HM?
Cho hình thang vuông MNEF vuông tại M và F, EF là đáy lớn. Hai đường chéo ME và NF vuông góc với nhau tại O.
1) Cho biết MN = 9 cm, MF = 12 cm.
a) Giải tam giác MNF.
b) Tính độ dài các đoạn thẳng MO, FO.
c) Kẻ NH vuông góc với EF tại H. Tính diện tích tam giác FNE. Từ đó tính diện
tích tam giác FOH.
2) Chứng minh \(MF^2=MN.FE\)
Cho tam giác ABC nhọn có AB> AC. Gọi M là tđ của BC; H là trực tâm; AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và ( C2) lần lượt là đường tròn ngoại tiếp tam giác AEF và DKE, với K là giao điểm của EF và BC.CMR: ME là tiếp tuyến chung của (C1) và (C2).
Giúp em với ạ!!
Cho tam giác abc vuông tại a có ab bé hơn ac.ah là đường cao.Gọi M là trung điểm ac,kẻ ai vuông góc với bm tại i a)Chứng minh cm²=mi.mb b)Chứng minh rằng bh.bc=bi.bm
Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E là chân các đường cao hạ từ H xuống AB, AC. CMR:
a, AD.AB = AE.AC
b, AM vuông góc với DE
c, \(\dfrac{CE}{BD} = (\dfrac{CA}{AB})^2\)