Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
=>AD cắt FE tại trung điểm của mỗi đường
=>O là trung điểm của AD
=>Khi D di chuyển trên BC thì O di chuyển trên đường AD
Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
=>AD cắt FE tại trung điểm của mỗi đường
=>O là trung điểm của AD
=>Khi D di chuyển trên BC thì O di chuyển trên đường AD
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.
cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
Cho tam giác ABC , đường trung tuyến AM.Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự ở E và F
a, Chứng minh rằng khi điểm D chuyển động trên cạnh BC thì tổng DE+DF có giá trị không đổi
b, Qua A vẽ đường thẳng song song với BC,cắt EF ở K.Chứng minh rằng K là trung điểm của EF
Cho tam giác ABC,trung tuyến AM.Qua D thuộc BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự tại E và F.CMR:
a)Khi D di động trên BC thì BE +DF không đổi.
b)Qua A kẻ đường thẳng song song với DC cắt EF ở K.CMR:K là trung điểm của EF
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D nằm trên cạnh BC, vẽ đường thẳng song song với AM cắt AB, AC lần lượt tại E, F.
a. CMR: DE + DF = 2AM.
b. Đường thẳng qua A song song với BC cắt EF tại N. CMR: N là trung điểm của EF.
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.
a, Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+NK+AD.
c, Tìm vị trí của điểm I để MN song song với BC.
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?