Bài 10. Tính chất ba đường trung tuyến của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Trên tia đối của tia MA lấy điểm D sao cho MD = MG. Chứng minh:

a) GA = GD;                              

b) \(\Delta MBG = \Delta MCD\);                                               

c) \(CD = 2GN\).

Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:52

a) G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC.

Suy ra: \(AG = 2GM\).  Mà trên tia đối của tia MA lấy điểm D sao cho MD = MG nên \(GD = 2GM\).

Vậy GA = GD (= 2GM).

b) Xét hai tam giác MBG và MCD có:

     MB = MC (M là trung điểm cạnh BC)

     \(\widehat {GMB} = \widehat {DMC}\)(đối đỉnh)

     GM = GD.

Vậy \(\Delta MBG = \Delta MCD\)(c.g.c).

c) \(\Delta MBG = \Delta MCD\) nên BG = CD (2 cạnh tương ứng).

Mà G là trọng tâm tam giác ABC nên \(BG = 2GN\). Mà BG = CD nên \(CD = 2GN\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết