Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Vũ Quỳnh Như

Cho tam giác ABC có độ dài phân giác trong là la, lb, lc. CMR: la ≤ ma và la+lb+lc≤p√3

Nguyễn Việt Lâm
27 tháng 3 2022 lúc 13:46

Không mất tính tồng quát, giả sử \(AB\le AC\)

Gọi M và D lần lượt là trung điểm và chân đường phân giác trong góc A trên BC

Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\ge\dfrac{BD}{AC}\Rightarrow CD\ge BD\)

\(\Rightarrow BD\le BC-BD\Rightarrow BD\le\dfrac{1}{2}BC\)

\(\Rightarrow BD\le BM\)

\(\Rightarrow AD\le AM\) hay \(l_a\le m_a\)(đpcm)

Đặt \(A=l_a+l_b+l_c=\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\)

\(\Rightarrow A^2=\left(\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\right)^2\)

\(\Rightarrow A^2\le\left[\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\right]\left(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}\right)\)

Áp dụng BĐT cơ bản \(\left(x+y\right)\ge4xy\) ta có:

\(\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\le\dfrac{4b^2c^2}{4bc}+\dfrac{4c^2a^2}{4ca}+\dfrac{4a^2b^2}{4ab}\)

\(=ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)

Đồng thời:

\(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}=\dfrac{3+cosA+cosB+cosC}{2}\le\dfrac{3+\dfrac{3}{2}}{2}=\dfrac{9}{4}\)

\(\Rightarrow A^2\le\dfrac{9}{4}.\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow A\le\sqrt{3}\left(\dfrac{a+b+c}{2}\right)=p\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi tam giác ABC đều


Các câu hỏi tương tự
Nkjuiopmli Sv5
Xem chi tiết
Mạc Hoàng Thu Uyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngọc Trần
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Lê Thành Tín
Xem chi tiết
Kinder
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kinder
Xem chi tiết