Không mất tính tồng quát, giả sử \(AB\le AC\)
Gọi M và D lần lượt là trung điểm và chân đường phân giác trong góc A trên BC
Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\ge\dfrac{BD}{AC}\Rightarrow CD\ge BD\)
\(\Rightarrow BD\le BC-BD\Rightarrow BD\le\dfrac{1}{2}BC\)
\(\Rightarrow BD\le BM\)
\(\Rightarrow AD\le AM\) hay \(l_a\le m_a\)(đpcm)
Đặt \(A=l_a+l_b+l_c=\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\)
\(\Rightarrow A^2=\left(\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\right)^2\)
\(\Rightarrow A^2\le\left[\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\right]\left(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}\right)\)
Áp dụng BĐT cơ bản \(\left(x+y\right)\ge4xy\) ta có:
\(\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\le\dfrac{4b^2c^2}{4bc}+\dfrac{4c^2a^2}{4ca}+\dfrac{4a^2b^2}{4ab}\)
\(=ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)
Đồng thời:
\(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}=\dfrac{3+cosA+cosB+cosC}{2}\le\dfrac{3+\dfrac{3}{2}}{2}=\dfrac{9}{4}\)
\(\Rightarrow A^2\le\dfrac{9}{4}.\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow A\le\sqrt{3}\left(\dfrac{a+b+c}{2}\right)=p\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi tam giác ABC đều