\(\frac{a}{\sin A}=\frac{b}{\sin B}=2R\Rightarrow\left\{{}\begin{matrix}\sin A=\frac{a}{2R}\\\sin B=\frac{b}{2R}\end{matrix}\right.\)
\(c^2=a^2+b^2-2ba\cos C\Rightarrow\cos C=\frac{a^2+b^2-c^2}{2ab}\)
\(dt\Leftrightarrow\frac{a}{2R}=2.\frac{b}{2R}.\frac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a=\frac{a^2+b^2-c^2}{a}\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Rightarrow b^2=c^2\Rightarrow b=c\)
Vậy tam giác ABC cân tại A