Cho tam giác ABC AB = 3 ,BC = 6 B = 60° tính AC , góc A , góc C
Cho a ,b,c là các số thực không âm thỏa mãn a2+b2+c2=1.chứng minh rằng: c/1+bc + b/1+ca + a/1+bc >= 1
Cho tam giác ABC các đường cao AH, BK chứng minh
A) 4 điểm A, K , H,B cùng nằm trên 1 đường tròn xác định tâm và bán kính
B) HK<AB
Trên đường tròn lượng giác gốc A, xác định các điểm M khác nhau, biết rằng cung AM có số đo tương ứng là (trong đó k là một số nguyên tùy ý)
a) \(k\pi\)
b) \(k\dfrac{\pi}{2}\)
c) \(k\dfrac{\pi}{3}\)
Đổi số đo của các góc sau ra độ, phút, giây ?
a) \(-4\)
b) \(\dfrac{\pi}{13}\)
c) \(\dfrac{4}{7}\)
Bài 1: Đổi số đo của các góc sau ra độ, phút, giây bằng 2 cách
a) \(\frac{\pi}{17}\)
b) \(\frac{2}{3}\)
c) -5
d) \(-\frac{2\pi}{7}\)
Cho cung lượng giác AB có số đo là 15 rad. Tìm số lớn nhất trong các số đo của cung lượng giác điểm đầu A, điểm cuối B, có số đo âm ?
1. Rút gọn biểu thức sau: C = \(sin6x\times cot3x-cos6x\)
2. Chứng minh các đẳng thức sau:
a) \(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
b) \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a+sin^2b}=cot^2a\times cot^2b-1\)
3. Cho \(\Delta ABC\). Chứng minh rằng: \(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times cos\frac{B}{2}\)
4. Chứng minh: Nếu \(sina=2sin\left(a+b\right)\) thì \(tan\left(a+b\right)=\frac{sina}{cosb-2}\)
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
Đổi số đo của các góc sau đây ra rađian :
a) \(18^o\)
b) \(57^o30'\)
c) \(-25^0\)
d) \(-125^045'\)