Cho tam giác ABC có ba góc nhọn. Các đường cao AM, BN, CK cắt nhau tại H (M ∈ BC, N ∈ AC, K ∈ AB). Gọi A1, B1, C1 lần lượt là điểm đối xứng với H qua BC, AC, AB. Chứng minh rằng:
a) ΔBHK đồng dạng với ΔCHN.
b) ΔKHN đồng dạng với ΔBHC.
c) BH.BN + CH.CK = BC2.
d) Tổng \(\dfrac{AA_1}{AM}+\dfrac{BB_1}{BN}+\dfrac{CC_1}{CK}\) có giá trị không đổi.
a: Xet ΔBHK vuông tại K và ΔCHN vuông tại N có
góc BHK=góc CHN
=>ΔBHK đồng dạng vơi ΔCHN
b: ΔBHK đồng dạngb vơi ΔCHN
=>HB/HC=HK/HN
=>HB/HK=HC/HN
=>ΔHBC đồng dạng với ΔHKN
c: Xét ΔBMH vuông tại M và ΔBNC vuông tại N có
góc MBH chung
=>ΔBMH đồng dạng vơi ΔBNC
=>BM/BN=BH/BC
=>BH*BN=BM*BC
Xét ΔCHM vuông tại M và ΔCBK vuông tại K có
góc BCK chung
=>ΔCHM đồng dạng vơi ΔCBK
=>CH/CB=CM/CK
=>CB*CM=CH*CK
BH*BN+CH*CK
=BM*BC+CM*BC
=BC^2