a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔAMB=ΔAMD
b: Ta có: ΔABD cân tại A
mà AM là đường trug tuyến
nen AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔAMB=ΔAMD
b: Ta có: ΔABD cân tại A
mà AM là đường trug tuyến
nen AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Cho tam giác ABC có AB<AC. Trên AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của cạnh BD.
a. Chứng minh góc ABM= góc ADM
b. Chứng minh AM ⊥ BD
c. Tia AM cắt cạnh BC tại K. Chứng minh AB=AD
d. Trên tia đối của tia BA lấy điểm F sao cho BF=DC. Chứng minh ba điểm F, K, D thẳng hàng
(Ghi giả thiết kết luận)
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm cạnh BD.
a) Chứng minh: Tam giác ABM = Tam giác ADM.
b) Chứng minh: AM _|_ BD.
c) Tia AM cắt BC tại K. Chứng minh: Tam giác ABK = tam giác ADK.
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm cạnh BD.
a) Chứng minh: Tam giác ABM = Tam giác ADM.
b) Chứng minh: AM _|_ BD.
c) Tia AM cắt BC tại K. Chứng minh: tam giác ABK = tam giác ADK.
VẼ HÌNH CHO MÌNH NX NHÉ!
Cho tam giác ABC có AB = AC và AB > BC. M là trung điểm của BC.
a. Chứng minh: tam giác ABM = tam giác ACM
b. Trên cạnh AB lấy D, trên cạnh AC lấy điểm E sao cho AD = AE. Chứng minh: MD = ME
c. Gọi N là trung điểm của BD. Trên tia đối của tian NM lấy điểm K sao cho NK = NM. Chứng minh: K, D, E thẳng hàng
(em mới học đến trường hợp bằng nhau t2 và t3 của tam giác thoi ạ, mng giải giúp theo mấy bài trước với ạ, em cảm ơn)
Cho tam giác ABC vuông tại A
a/ Trên tia đối của tia AC lấy điểm D sao cho AD=AC
Chứng minh ΔABC=ΔABD và suy ra tam giác DBC cân tại B
b/ Lấy điểm M thuộc cạnh BD, điểm N thuộc cạnh BC sao cho BM=BN. Chứng minh MN//DC
c/ Trên tia đối của tia CB lấy điểm E sao cho CE=CN. Từ điểm M kẻ đường thẳng song song với BC cắt cạnh CD tại F. Nối ME cắt cạnh CD tại I . Chứng minh IF=IC
Cho Δ ABC vuông tại A, có AB = 6cm, AC = 8cm.
a) Tính độ dài cạnh BC.
b) Kẻ AH vuông góc với BC tại H ( H ∈ BC). Trên đoạn thẳng HC lấy điểm D sao cho HD = DB. Chứng minh AB =AD.
c) Trên tia AH lấy điểm K sao cho H là trung điểm của AK. Chứng minh KD vuông góc với AC.
Giúp mình với mình cần gấp đúng mình tick hết nhé.
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
Bài 4: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của cạnh BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE
a) Chứng minh △ABM = △ACM.
b) Chứng minh AM ⊥ BC.
c) Chứng minh △ADM = △AEM.
d) Gọi H là trung điểm của cạnh EC. Từ C vẽ đường thẳng song song với cạnh ME, đường thẳng này cắt tia MH tại F. Chứng minh ba điểm D, E, F thẳng hàng.
BÀI 4 :Cho tam giác ABC cân tại A, vẽ AH vuông góc BC tại H. biết AB = 10cm, BH = 6cm.
1. Tính AH.
2. Chứng minh Δ ABH = Δ ACH.
3.Trên cạnh BA lấy điểm D, CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HDE cân.
4.Chứng minh DE // BC.