Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nghiên Hy

Cho tam giác ABC có AB=AC, M là trung điểm của BC

a) C/m tam giác ABM=tam giác ACM

b)TRên tia đối của MA lấy điểm D sao cho MD=MA. c/m AC=BD

c) c/m AB//CD
d) trên nửa mặt phẳng bờ là AC ko chưa B, vẽ tia Ax//Bc lấy điểm I thuộc Ax sao cho AI=BC c/m D,C,I thăng hàng

Trương Hồng Hạnh
14 tháng 12 2016 lúc 21:31

Ta có hình vẽ:

A B C M D I

a/ Xét tam giác ABM và tam giác ACM có:

AM: cạnh chung

AB = AC (GT)

BM = MC (GT)

=> tam giác ABM = tam giác ACM (c.c.c)

b/ Xét tam giác ACM và tam giác BDM có:

\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)

BM = MC (GT)

AM = MD (GT)

=> tam giác ACM = tam giác BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

c/ Xét tam giác ABM và tam giác CDM có:

BM = MC (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

AM = MD (GT)

=> tam giác ABM = tam giác CDM (c.g.c)

=> \(\widehat{BAM}=\widehat{MDC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CD (đpcm)

d/ Xét tam giác AIC và tam giác ABC có:

AI = BC (GT)

\(\widehat{IAC}=\widehat{ACB}\) (vì 2 góc này so le trong theo giả thuyết có Ax // BC)

AC: cạnh chung

=> tam giác AIC = tam giác ABC (c.g.c)

=> \(\widehat{BAC}=\widehat{ACI}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // IC

Ta có: AB // CD; AB // IC => IC trùng CD

hay D,C,I thẳng hàng

Aki Tsuki
14 tháng 12 2016 lúc 21:14

a/ Xét ΔABM và ΔACM có:

AM : cạnh chung

AB = AC (gt)

BM = CM (gt)

=> ΔABM = ΔACM (đpcm)

b) Xét ΔAMC và ΔDMB có:

MA = MD (gt)

\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)

BM = CM (gt)

=> ΔAMC = ΔDMB (c.g.c)

=> AC = BD (2 cạnh tương ứng) (đpcm)

c) Vì ΔAMC = ΔDMB (ý b)

=> \(\widehat{MAC}=\widehat{MDB}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên:

=> AB // CD (đpcm)