Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
......cứu mình với, đang cần gấp...
cho tam giác abc vuông tại a có ab=6cm, bc=10cm, ac=8cm.
a, so sánh các góc của tam giác abc.
b, trên tia đối của tia ab lấy điểm d sao cho a là trung điểm của đoạn thẳng bd. gọi k là trung điểm của cạnh bc, đường thẳng dk cắt cạnh ac tại m. tính mc.
c, đường trung trực d của đoạn thẳng ac cắt đường thẳng dc tại q . c/m ba điểm d, m, q thẳng hàng
..........vẽ hình nữa nhé........
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho ABC vuông tại B có 60o A , phân giác góc BAC cắt BC ở D. Kẻ DH vuông góc với AC ( H thuộc AC) a. Chứng minh ABD AHD b. Chứng minh HA HC c. So sánh DC và AB d. Gọi I là giao điểm của HD và AB, lấy E là trung điểm của CI. Chứng minh A,D,E thẳng hàng
Cho tam giác cân ABC (AB=AC) .Gọi D là trung điểm của BC, từ D hạ DE, DF vuông góc với Á theo thứ tự AC. Chứng minh:
a) tam giác AED = tam giác ÀD vuông góc vơi AB, AC theo thứ tự (E thuôc AB, F thuộc AC). Chứng minh:
a) tam giác AED= tam giác AFD và AD là trung trực của đoạn thẳng EF
b) Trên tia đối tia DE lấy điểm K sao cho DK=DE. Chứng minh tam giác EKC vuông
c) So sánh BF và EK
Câu 3 : Cho tam giác ABC vuông tại A, kẻ tia phân giác của góc BC cắt AC tại I. Kẻ IM vuông góc với BC tại M, gọi N là giao điểm của BA và MI .
a) Chứng minh tam giác ABI=MBI
b) So sánh AI và IC.
c) Gọi K là trung điểm của FC. Chứng minh ba điểm B; I; K thẳng hàng.
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC