cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tạiI, kẻ IE vuông góc BC tại E.
a, chứng minh tam giác ABI= tam giác EBI từ đó so sánh AI và IC.
b, gọi F là giao điểm của BA và EI. chứng minh BI vuông góc IC
Cho ΔABC vuông tại A. Vẽ tia phân giác của góc ABC cắt cạnh AC tại H. Từ H vẽ HM ⊥ BC tại M. Gọi N là giao điểm của tia BA và tia MH.
a) Chứng minh: ΔABH = ΔMBH
b) Chứng minh: ΔAHN = ΔMHC
c) Chứng minh: BH vuông góc NC
d) Gọi K là trung điểm của cạnh NC. Chứng minh ba điểm B, H, K thẳng hàng.
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
Cho tam giác abc có góc A bằng 90 độ, AB = 6cm AC=8cm kẻ tia phân giác BD (D thuộc AC) kẻ DE vuông góc với BC
a. Tính BC, BE
b. Chứng minh BD là trung trực của AE
c. ED cắt BA tại M. chứng minh tam giác MBC cân
d. Gọi I là trung điểm MC. Chứng minh BDI thẳng hàng( cần gấp)
e. Chứng minh BD > AD
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
Cho tam giác ABC vuông tại A (AB<AC) Tia phân giác của góc ABC cắt cạnh AC tại D. Từ D kẻ DH vuông góc với AC (H thuộc AC).
A/ Chứng minh: tam giác ABD= tam giác HBD.
B/ Đường thẳng HD cắt đường thẳng BA tại K. Chứng minh: Tam giác BKC.
C/ Gọi M là trung điểm của KC. Chứng minh 3 điểm B, D, M thẳng hàng.
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
a)C/M ΔABD=ΔHBD
b)C/M BD là đường trung trực của AH
c)C/m ba điểm B,A,K thẳng hàng