a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
góc BAD chung
Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔIBE và ΔICD có
\(\widehat{IBE}=\widehat{ICD}\)
\(\widehat{BIE}=\widehat{CID}\)
Do đó: ΔIBE\(\sim\)ΔICD
Suy ra: IB/IC=IE/ID
hay \(IB\cdot ID=IC\cdot IE\)
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
góc BAD chung
Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔIBE và ΔICD có
\(\widehat{IBE}=\widehat{ICD}\)
\(\widehat{BIE}=\widehat{CID}\)
Do đó: ΔIBE\(\sim\)ΔICD
Suy ra: IB/IC=IE/ID
hay \(IB\cdot ID=IC\cdot IE\)
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số AN/AB và AM/AC. Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN. Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB
cho tam giác abc, điểm e trên cạnh ab sao cho ae=1/2 eb. điểm d trên cạnh ac sao cho ad=1/3 dc. k là giáo điểm của bd và ce. tính tỉ số ek/kc
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D a/ chứng minh tam giác HBA đồng dangj tam giác ABC b/ Tính độ dài cạnh BC c/ tính tỉ số diện tích của hai tam giác ABD và ACD d/ Tính độ dài các đoạn thẳng BD và CD
Cho tam giác ABC và đường trung tuyến BM. Trên đoạn BM lấy điểm H sao cho BH/HM =1/2. tia AH cắt BC tại K và cắt tia Bx tai E (Bx // AC). a) Tìm tỉ số BE/AC b) Chứng minh BK/=BC = 1/5 c) Tìm tỉ số diện tích của hai tam giác ABK và ABC.
Cho tam giác ABc có AB=6cm; AC=7,5 , BC=9cm . Trên tia đối của tioa AB lấy điểm D sao cho AD=AC . Chứng minh tam giác ABC đồng dạng với tam giác CBD
( Khỏi vẽ hình )
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là điểm đối xứng của H qua các cạnh AB, AC.
a) chứng minh BD//CE.
b. Chứng minh tam giác ABD đồng dạng với tam giác ACE.
Cho tam giác ABC có AB = 15cm, AC = 21cm. Trên cạnh AB lấy E sao cho AE = 7cm, trên cạnh AC lấy D sao cho AD = 5cm. Tính tỉ số diện tích tứ giác BCDE và diện tích tam giác ABC
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db